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To provide a computational efficient forward model with moderate accuracy for rapid 3D optical
tomography in small volumes, radiative transport in the delta-P1 approximation combined with
the approximation of the reciprocity was examined. Perturbations of optical signals caused by
absorption and fluorescence heterogeneities submerged in a resin-based liquid phantom with
background parameters close to rat brain tissues were measured using a recently constructed
laminar optical tomography system. These measured perturbations were used to examine the
theoretically calculated fluence perturbations based on the delta-P1 approximation and the
reciprocity approximation. Results show that the errors between the predicted and measured
data are acceptable, especially for fluorescence perturbations.
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1. Introduction

Optical absorption or fluorescent contrast generated
by tissue chromophores or fluorophores, such as
hemoglobin, melanin, and endogenous/exogenous
fluorescent dyes, provides unique tissue functional
information.1−9 Over the past years, various optical
techniques have been developed for 3-dimensional
(3D) and functional imaging in living tissue, such
as optical microscopy,2 spectroscopy3,4 and (flu-
orescence) diffuse optical tomography (DOT).5−9

These promising techniques have been inten-
sively investigated for disease detection, diagnosis,
and treatment monitoring.2−9 Recently, 3D opti-
cal imaging in mesoscopic volumes is attracting
considerable interests due to numerous potential
applications to small animal imaging and superficial
tissue imaging.10−18 As an example, laminar opti-
cal tomography (LOT) was proposed and developed
for functionally imaging stratified tissue, such as

homodynamic response and neurovascular coupling
in rat cortex,14 transmural propagation of electri-
cal waves in rat heart,15 and human skin lesion
boundaries.18 LOT is a hybrid technique that com-
bines the instrumentation of laser scanning confocal
microscopy, with the imaging approach of diffuse
optical tomography.13−18 By measuring multiple-
scattered light over distances of only a few mil-
limeters between source-detector pairs, LOT can
maintain high levels of resolution (< 200 microns),
which is much higher than DOT, and yet LOT can
probe tissues beyond the scattering limit encoun-
tered by microscopy (2–3 mm depth).13−18

Rapid image reconstruction is highly desir-
able in many applications, such as homodynamic
response to external stimuli and neurovascular
coupling in rat cortex.14 A recently developed
LOT system can reach a data-acquisition speed as
high as 100 frames/s, which eliminates hardware
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limitations for applications of rapid imaging.16,17

Since the imaging volume in LOT is usually much
smaller than that in conventional DOT,13−18 Monte
Carlo (MC) simulation, a computational intensive
model, was adopted previously for calculating sig-
nal perturbations caused by optical heterogeneities,
because the standard photon diffuse approximation
(SDA) used in DOT is invalid.10−12 Consequently,
the speed of image reconstruction in LOT is mainly
limited due to the intensive computations of MC
simulations. On the other hand, it is well known
that analytical models, such as diffusion approxi-
mations, can provide efficient calculations for flu-
ence perturbations (but suffers from low accuracy
in small volumes).10−12 Radiative transport in the
delta-P1 approximation, as an improved diffusion
approximation, has been developed and validated
that it maintains considerably high accuracy for
estimating surface diffuse reflectance even when
source–detector separation is reduced to as short
as one fifth of one transport mean free path.19−24

However, the applicability of delta-P1 approxima-
tion to 3D tomographical imaging has not been val-
idated. To provide a computational efficient model
for rapid LOT imaging, delta-P1 approximation is
evaluated in this study by comparing the theoret-
ically calculated fluence perturbations (including
absorption and fluorescence perturbations) with the
experimentally measured perturbations in phan-
toms. Results show that the errors between the pre-
dicted and measured data are acceptable, especially
for fluorescence perturbations.

This paper is organized as follows: the delta-P1
is briefly introduced in Sec. 2, and the materials,
system, and experiments are presented in Sec. 3.
Results and discussions are detailed in Sec. 4 and
conclusions are given in Sec. 5.

2. Forward Models

2.1. Delta-P1 approximation

By introducing a delta function to the single scat-
tering phase function to better accommodate the
strong forward scattering of tissue, and consider-
ing a collimated light source that “generates” the
diffuse light, Star1,19 and Prahl20 first proposed
delta-P1 approximation to improve the prediction
accuracy of diffuse reflectance relative to standard
diffuse approximation for one-dimensional geome-
try media. Venugopalan et al. further developed and
quantified the delta-P1 theory for a 3Dmedium.21−24

A brief introduction to delta-P1 approximation
is given below, specifically for a collimated laser
beam launched normally to a semi-infinite medium.
The governing equations of fluence in the delta-P1
approximation are given as follows21−22:

∇2Φd(r)−µ2
effΦd(r)

= −3µ∗
s(µtr + µ∗

t g
∗)Φc(z)δ(1 − r̂ · ẑ), (1)

Φc(z) = P0(1 − Rs) exp(−µ∗
t z), (2)

Φtotal(r) = Φd(r) + Φc(z)δ(1 − r̂ · ẑ)), (3)

where Φd is diffused fluence, Φc collimated fluence,
µeff =

√
3µaµtr, µtr = µa +µ′

s, g∗ = g/(1+ g), µ∗
s =

µ′
s(1+g), µ∗

t = µa+µ∗
s, µa absorption coefficient, µs

scattering coefficient, g anisotropy factor, P0 laser
power, and Rs the reflection coefficient at tissue–
air boundary, respectively. Combining Eqs. (1)–(3)
with an extrapolated boundary condition for a semi-
infinite medium,25 the diffused fluence Φd can be
solved as

Φd(ρ, z) =
A

4πD

∫ ∞

0

[
exp(−µeffr1)

r1

− exp(−µeffr2)
r2

]
exp(−µ∗

t z
′)dz′, (4)

where A = (µ∗
t + µag

∗)µ∗
s/µtr, D = 1/(3µtr)

(diffusion coefficient), r1 = [ρ2 + (z − z′)2]1/2,
r2 = [ρ2 + (z + z′ + 2zb)2]1/2, ρ2 = x2 + y2, z′
is the position of any point on the line source,
zb = 2D(1 + R1)/(1 − R1), and R1 is the effective
Fresnel reflection coefficient for unpolarized light.
Figure 1 depicts the configuration of all geometrical
parameters, and all the parameters in Eq. (4) have
been defined in Refs. 21 and 22. Gaussian quadra-
ture with a Legendre polynomial weighting function
was adopted to calculate the line integration and
the diffused fluence in Eq. (4).22 The total fluence
is given by Eq. (3).

2.2. Fluence perturbations

In 3D tomographic imaging, fluence perturbations
caused by an absorbing or fluorescent heterogene-
ity at different locations (x, y and z) are cal-
culated based on a forward model for different
source–detector pairs, and compared with the exper-
imentally measured perturbations of the diffused
reflectance. Therefore, the accuracies of the calcu-
lated fluence perturbations (mainly determined by
the forward model) directly affect the accuracies of
the reconstructed optical parameters. In DOT, when

J.
 I

nn
ov

. O
pt

. H
ea

lth
 S

ci
. 2

00
9.

02
:1

49
-1

63
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 H

U
A

Z
H

O
N

G
 U

N
IV

E
R

SI
T

Y
 O

F 
SC

IE
N

C
E

 A
N

D
 T

E
C

H
N

O
L

O
G

Y
 o

n 
10

/2
5/

18
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



May 9, 2009 19:22 00048

Radiative Transport in the Delta-P1 Approximation for Laminar Optical Tomography 151

Fig. 1. Schematic drawing of the extrapolated boundary
condition with a line source.

an analytical forward model is employed, Green’s
function of a point source is usually adopted to cal-
culate the fluence perturbations.4−9 For LOT the
fluence perturbations were calculated based on an
assumption of reciprocity in which the probability
of a photon propagating from point A to point B is
assumed equal to the probability of a photon propa-
gating from point B to point A (see Appendix B for
details).13−15,26−28 Based on the assumption of the
reciprocity, the relative perturbation of fluence for a
source–detector pair can be expressed as:

∆Φi

Φ0i
=

N∑
j=1

Wij(rsi, rj , rdi)
(

Φ0(rsi, r0)
S0

∆µa(rj)
)

,

(5)

where ∆Φi/Φ0i = (Φi − Φ0i)/Φ0i is the relative
perturbation of fluence of the ith source–detector
pair; rsi and rdi are the position of the ith source
and detector, respectively; rj is the position of the
jth voxel in the medium; N is the total number of
voxels in the imaging volume; Φ0(rsi, r0) is the flu-
ence at position r0 generated by the ith source at
position rsi; S0 is a power constant; and ∆µa(rj)
is the perturbation of absorption coefficient at the
jth voxel. The sensitivity matrix Wij(rsi, rj , rdi) is
expressed as:

Wij(rsi, rj , rdi)

= −∆v ·
(

Φ0(rsi, rj)
Φ0(rsi, r0)

)

·
(

Φ0(rsi, |rj − rdi|)
Φ0(rsi, r0)

)/(
Φ0(rsi, rdi)
Φ0(rsi, r0)

)
,

(6)

where ∆v is the voxel volume, Φ0(rsi, r0) is the flu-
ence at any position r0 generated by the ith source
at position rsi and is used as a normalization factor
that makes the sensitivity matrix nondimensional.
The principle of reciprocity has been used in Eq. (6)
(see Appendix B for details). Rytov approximation
is used to connect experimentally measured signal
perturbation and the theoretically calculated flu-
ence perturbation by the following equation5,6,29:

∆Mi

M0i
≈ exp

(
∆Φi

Φ0i

)
− 1. (7)

M0i is the measured signal of the ith source–
detector pair without the perturbation of the opti-
cal parameter and ∆Mi = Mi−M0i is the difference
between the measured signals with and without the
perturbation in the optical parameter.

In this study, fluence is assumed to be propor-
tional to the experimentally measured signal. To
examine the validity of this assumption in LOT,
the following analysis is given. Based on Eq. (A1),
the measured signal in LOT is proportional to the
angular integration of the diffused reflectance at
the medium surface within the acceptance angle of
the LOT system. The angular distribution of the
diffused reflectance at any point along radial direc-
tion was simulated using MC simulation,30,31 and
is integrated from −4.5 to 4.5 degrees (a typical
acceptance angle in LOT16,18 and zero degree rep-
resents the outward direction normal to the medium
surface). The integrated value represents the mea-
sured LOT “signal” at the position. The signal is
plotted as a function of the radial distance indi-
cated by a dashed line in Fig. 2. On the other hand,
the fluence (just underneath the medium surface)
is also calculated from the same MC simulation,
which is shown as a solid line. To examine the rela-
tionship between the signal and the fluence, the
ratio of the fluence to the signal was plotted as
a dotted line in Fig. 2. The dash-dot line almost
represents a constant except in the region close to
the source position. The black dotted line indicates
the constant (for eye guide). When the radial dis-
tance ρ is less than ∼ 0.33 mm, the ratio diverges
from the constant. The radial distance at which
the ratio diverges from the constant is defined as
starting-diverging-distance (l) and is indicated on
Fig. 2. A finite width of a laser beam (50 microns
in radius) in the MC simulation causes the jumps of
the curves. This result implies that the LOT’s signal
is proportional to the fluence around the boundary
except for very short source–detector separations.
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Fig. 2. MC simulation of fluence, angular integral of diffuse
reflectance and ratio between them as a function of lateral
distance x from the light source. The source is assumed as
a flat beam with a radius of 50 microns and total energy of
1 Joule.

Therefore, Eq. (4) can be used to calculate fluence
distribution in a semi-infinite medium and Eq. (6)
can be used to calculate the sensitivity matrix in
terms of the calculated fluence from Eq. (4). Based
on the sensitivity matrix and a given perturbation
in absorption coefficient, Eq. (5) can be used to
calculate the relative perturbation of the fluence.
Eventually, Eq. (7) is used to predict the normal-
ize signal perturbations in experiments. By compar-
ing the perturbation calculated from Eq. (7) with
the experimentally measured perturbation from the
LOT system, one can analyze the accuracy of the
delta-P1 approximation.

3. Materials, System, and
Experiments

A resin-based liquid phantom was adopted in
present study and the details can be found in
Refs. 32 and 33. Briefly, epoxy resin was dissolved
with certain amount of a dye and Tiranti opaque
white polyester pigment to mimic a homogeneous
tissue. The dye and the white polyester pigment
were used to generate light absorption and scat-
tering, respectively. After careful calibration, the
absorption coefficient and the reduced scattering
coefficient at 532 nm were µα = 0.2 mm−1 and
µ′

s = 0.6 mm−1, respectively, which are typical val-
ues of rat’s brain tissue.14 The refractive index is
1.58 based on Ref. 32. An absorbing stick (∼ 500
microns diameter) was used to mimic absorp-
tion perturbations. The absorption coefficient and

the reduced scattering coefficient of the stick were
µα = 1.5 mm−1 and µ′

s = 0.6 mm−1, respectively.
For fluorescence measurements, a plastic tube filled
with Rhodamine aqueous solutions was submerged
in the same liquid phantom. The concentration of
Rhodamine in the tube was 0.2 mg/ml.

The principle and characteristics of the LOT
system have been given in Refs. 13, 16 and 18.
Briefly, LOT technique utilizes instrumentation
similar to a laser scanning confocal microscope and
can acquire both diffused reflected light and fluo-
rescence emission. However, LOT detects photons
emerging from the medium at successive lateral dis-
tances from the beam’s focus. The separation dis-
tance between the laser source and the detectors can
be controlled by optical magnification of the system.
The imaging depth can reach ∼ 2−3mm with spa-
tial resolution around hundred microns.13−16 Low
numerical aperture (NA) objective lens was adopted
in the LOT system to avoid measurement errors
caused by surface unflatness. Therefore, the accep-
tance angle of the LOT system is small (∼ 4.5
degrees).

Figure 3 schematically shows the experimental
setup. The LOT system scanned the focused laser
beam within a square area (along x and y direc-
tions) on the top of the liquid phantom (without
the absorbing stick) and simultaneously acquired
signals for seven detectors with different separa-
tions from the light source. For each detector, a
set of 2D data (along x- and y-axis) was obtained.
These data were used as the background signals.
Then, the vessel-like absorbing stick was submerged
into the homogeneous resin solution along y-axis
and parallel to the surface of the liquid phantom.

Fig. 3. A schematic drawing of the experimental setup.

J.
 I

nn
ov

. O
pt

. H
ea

lth
 S

ci
. 2

00
9.

02
:1

49
-1

63
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 H

U
A

Z
H

O
N

G
 U

N
IV

E
R

SI
T

Y
 O

F 
SC

IE
N

C
E

 A
N

D
 T

E
C

H
N

O
L

O
G

Y
 o

n 
10

/2
5/

18
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



May 9, 2009 19:22 00048

Radiative Transport in the Delta-P1 Approximation for Laminar Optical Tomography 153

For each stick depth, LOT scanned the same square
area as before and simultaneously acquired data
for the seven channels. These data were called het-
erogeneous data. Like the background signals, each
channel acquired a set of 2D data (along x- and
y-axis). For each channel, both the background
signals and the heterogeneous data were averaged
along y direction, thus, the 2D data became 1D
data (along x-axis). The averaged background sig-
nals were subtracted from the averaged heteroge-
neous data. To normalize the difference data, the
1D background data were further averaged (along
x-axis) and became a number for each channel, and
this number was used to normalize the difference
data. The normalized difference was multiplied by
100 and converted into percentage of the pertur-
bation. Consequently, each channel obtained a set
of 1D data (along x-axis) about the percentage of
the perturbation caused by the absorbing stick for
each stick depth. Increasing the stick depth from
0.25 mm to 4 mm with an increment of 0.25 mm,
repeating the above data acquiring and process-
ing procedures, formatting all the data into a 3D
structure (z, x, channel) in MATLAB (Mathworks,
MA), displaying the data in x−z plane for all chan-
nels, one can compare the experimentally measured

Fig. 4. Experimental data of the logarithm of the relative perturbation caused by an absorbing stick in x−z plane for different
source–detector separations. The separation distance is shown on the upper-right corner of each image. Optical parameters of
the medium are listed on the figure and text. As an example, the arrows indicated on the last image represent the source and
the detector positions.

relative perturbations with the theoretically esti-
mated perturbations in x−z plane for all channels.

Similar procedures were performed for the
Rhodamine-filled tube, but there is no need for sub-
tracting the background signals because there is no
Rhodamine added in the homogeneous phantom.
Therefore, the maximum value of the signal at a
depth z = 2 mm was arbitrarily chosen as the nor-
malization factor for each channel.

4. Results and Discussions

4.1. Absorption perturbation

Figure 4 displays the logarithm of the experi-
mentally measured relative perturbations (log10 ·
(∆M/M0 × 100)) in x−z plane for the seven
detectors with different source–detector separa-
tions. Data shown in Fig. 4 have been interpo-
lated based on the original experimental data using
MATLAB. The source–detector separation distance
is listed on the upper-right corner of each image,
which is 0, 0.4, 0.6, 0.8, 1.2, 1.6, 2.0 mm, respec-
tively. Color intensity represents the percentage of
the perturbation. It is clear that the wider the
source–detector separation is, the deeper the light
can probe. Also, the closer the stick is to the source
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or the detector, the larger the relative perturbation
is. Limited by the system noise, the perturbation
less than 0.1% cannot be detected.

To use delta-P1 approximation to calculate
the relative perturbations, anisotropy factor g is
needed. By fitting MC-simulated data to these
experimental data, it has been found that pertur-
bation is much more sensitive to the absorption
coefficient µa and the reduced scattering coeffi-
cient µ′

s than to the anisotropy factor g when g is
between 0.6–0.9 for non-zero source–detector sepa-
ration. Therefore, 0.8 is used as the estimated value
for g although it is larger than the measured value
0.5 at near infrared region in Ref. 32. It should be
pointed out that similar results can be obtained no
matter what value of g is chosen between 0.9 to 0.6,
as long as the same reduced scattering coefficient
and absorption coefficient are used. Similar results
have been reported in Refs. 34 and 35, which is
attributed to the similarity relation.

Figure 5 shows the corresponding results cal-
culated from delta-P1 approximation. Figure 5(a)
displays the logarithm of the relative perturbation
(log10[(exp(∆Φi/Φ0i) − 1) × 100]) in x−z plane. To
compare Fig. 5(a) with Fig. 4, the contours at 3%,
15%, and 25% of two sets of data were plotted
in Fig. 5(b). Solid lines represent the experimental
data and dotted lines represent the simulated data
from the delta-P1 approximation, respectively. The
simulated data have large errors relative to the
experimental data for short source–detector sep-
arations, such as rsd = 0 and 0.4 mm. When
rsd increases, the errors between two sets of data
reduce, especially for small perturbations (3% and
15%). When the heterogeneity is close to the source
or detectors (where large perturbations occur),
large errors exist.

Figures 6(a) and 6(b) respectively represents
the relative perturbation as a function of the stick
depth for the experiment data and delta-P1 sim-
ulated data along a line directly underneath the
light source (see the dotted line on the last image of
Fig. 5(a)) and the middle line between the source
and the detector (see the dashed line indicated on
the last image of Fig. 5(a)). The arrows and num-
bers in Fig. 6 indicate the relative errors between
the simulated perturbations and the experimentally
measured perturbations at specific depths (note
all errors were presented as positive to avoid can-
cellations when averaging the errors). Figure 6(a)
shows that delta-P1 underestimates the relative
perturbations for all channels when the depth

is < 0.5 mm. Large errors between the simulated
and experimental perturbations exist in this region
(depth is < 0.5 mm) in both Figs. 6(a) and 6(b).
Figure 6 implies that delta-P1 approximation gen-
erates large errors at the first two channels (rsd = 0
and 0.4 mm). Therefore, the data acquired from
these two channels may not be used for image recon-
struction. When ignoring the data of the first two
channels, the averaged errors of all other chan-
nels for depth = 0.25 mm in Figs. 6(a) and 6(b)
are 39.45% and 39.81%, respectively (see Table 1).
When depth is between 0.5 and 1.5 mm, the relative
errors are reduced. For example, the averaged rel-
ative errors for depth = 1.0 mm of Figs. 6(a) and
6(b) are 13.93% and 13.88%, respectively. When
depth > 1.5 mm, the relative errors rise again but
are smaller than the errors in the shallow region
(depth < 0.5 mm). For example, the averaged rela-
tive errors for depth = 2.0 mm of Figs. 6(a) and 6(b)
are 24.86% and 30.97%, respectively. This may be
partially caused due to the increase of the mea-
surement errors. Table 1 summarizes the averaged
relative errors.

Some singular points occur in Fig. 5(a). As an
example, a white circle in the first image indicates
a singular point. This is because the integration in
Eq. (4) was performed by Gaussian quadrature with
a Legendre polynomial weighting function.22,36 In
this method, the roots of the Legendre polynomial
determine the z positions of the point sources on
the line source. When any roots happen to over-
lap with or are very close to any node of the grid,
zero or very small distance between the point source
and the note occur, which leads to large calculated
fluence because the fluence is inversely related to
the distance (see Eq. (4)). The sizes of the singular
points in Fig. 5(a) reflect the stick diameter. There-
fore, these singular points should be replaced by the
average of the surrounding data points in the sen-
sitivity matrix.

4.2. Fluorescence perturbation

Figure 7 shows the logarithm of the experimen-
tally measured normalized fluorescence perturba-
tions (log10(Mfl(rs, rd)/Mfl(rs, r0) × 100)) in x−z
plane for different source–detector separations. As
mentioned in Sec. 3, the normalization factor
Mfl(rs, r0) can be any point on each image (but bet-
ter to use the data from the same location for all the
channels). Compared with Fig. 4, Fig. 7 indicates
that fluorescence perturbation is more diffused than
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(a)

(b)

Fig. 5. (a) The logarithm of the relative perturbation in x−z plane calculated based on the delta-P1 approximation. Back-
ground parameters were listed on the figure. (b) Contour distributions of (a) (3%, 15% and 25%). The solid and dotted lines
represent the experimental data and the simulated data, respectively.
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(a)

(b)

Fig. 6. (a) The logarithm of the relative perturbation as a function of the stick depth (along the line directly underneath the
light source, such as the dotted line on the last image in Fig. 5(a), for all the source–detector separations). (b) Similar data
but along the middle lines between the sources and the detectors for all separations, such as the dashed line on the last image
in Fig. 5(a).

absorption perturbation. This is reasonable because
the emission of fluorescence is isotropic. Therefore,
the delta-P1 approximation is expected to provide
more accurate estimation for fluorescence perturba-

tions. This is verified by Figs. 8 and 9. Figure 8(a)
shows the logarithm of the normalized fluorescence
perturbation calculated from delta-P1 approxima-
tion. Since the differences of both the absorption
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Table 1. Averaged errors of delta-P1 simulated perturbations relative to the experimentally measured
perturbations. The data samples were taken from Figs. 6 and 9.

Relative errors of absorption perturbation Relative errors of fluorescent perturbation

D = 0.25 mm D = 1.0 mm D = 2.0 mm D = 0.25 mm D = 1.5 mm D = 3.0 mm

Line 1 39.45% (W) 13.93% (W) 24.86% (W) 53.63% 13.45% 22.16%
(± 1.08%) (± 6.33%) (± 10.45%) (± 14.3%) (± 13.77%) (± 18.39%)

47.32% (W) 7.45% (W) 15.79% (W)
(± 10.93%) (± 4.2%) (± 13.13%)

Middle line 39.81% (W) 13.88% (W) 30.97% (W) 23.63% 13.42% 25.18%
(± 9.83%) (± 6.95%) (± 17.85%) (± 27.54%) (± 14.26%) (± 18.51%)

8.37% (W) 7.1% (W) 17.49% (W)
(± 6.2%) (± 5.63%) (± 13.78%)

Note: For a specific depth, the relative errors from all the channels or the last five channels (indicated
as W) were averaged and indicated in the table. The data in parentheses in the table showed the
standard deviations. D: depth of the stick or the fluorophore-filled tube; (W): without considering
the first two channels (rsd = 0 and 0.4 mm); Line 1: the line underneath the light source; Middle line:
the middle line between a source and a detector.

Fig. 7. Experimental data of the logarithm of the normalized fluorescence perturbation caused by the Rhodamine-filled tube
in x−z plane for different source–detector separations. The separation distance is shown on the upper-right corner of each
image. Optical parameters of the background medium are same as those shown in Fig. 4. As an example, the arrows indicated
on the last image represent the source and the detector positions.

coefficient and the scattering coefficient between the
excitation light and the emission light are ignored,
essentially Fig. 8(a) was calculated based on the
same formulas and same parameters as those used

for Fig. 5(a) except the normalization factor. Sim-
ilar contours (5%, 90%, and 300%) are plotted in
Fig. 8(b). The numbers marked on the contours are
relative to the normalization factor. In Fig. 8(b), all
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(a)

(b)

Fig. 8. (a) The logarithm of the normalized fluorescence perturbation in x−z plane calculated based on the delta-P1 approx-
imation. (b) Contour distributions of (a) (5%, 90% and 300%). The solid and dotted lines represent the experimental data
and the simulated data, respectively. All the parameters of the background medium are the same as those in Fig. 5.
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(a)

(b)

Fig. 9. (a) The logarithm of the normalized fluorescence perturbation as a function of the tube depth along the line directly
underneath the light source, such as the dotted line on the last image in Fig. 8(a), for all the source–detector separations.
(b) Similar data but along the middle lines between the sources and the detectors for all separations, such as the dotted line
on the last image in Fig. 8(a).

channels show good agreements between the experi-
mental data (solid lines) and the delta-P1 simulated
data (dotted lines).

Similar to Figs. 6(a) and 6(b), Figs. 9(a) and
9(b) plot the normalized fluorescence perturbation
as a function of the depth of the fluorescent tube

for the experiment data and the simulated data
along the line directly underneath the light source
and the middle line between the source and detec-
tors, respectively. The relative errors at depth =
0.25, 1.5, and 3.0 mm were indicated in the figure.
The averaged relative errors of the different
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channels at the three depths are provided in Table 1.
The data marked with “W” mean that these data
were calculated without considering the first two
channels. Comparing these data with those of
absorption perturbations, one can find that the
averaged relative errors of fluorescence perturba-
tions reduce obviously for both shallow and depth
regions (7.45% and 7.1% when depth= 1.5 mm, and
15.79% and 17.49% when depth =3.0 mm). The
exceptions are the location very close to the light
source, 0.25 mm underneath the light source where
the averaged relative error reaches 47.32%, and the
location very close to the detector (data not shown).
This result may be caused by the intrinsic lim-
itations of the diffusion model. Since the signal-
to-noise ratio in the measurements degraded, the
averaged relative errors increased when the depth
was increased from 1.5 to 3 mm. When the first two
channels were included, the averaged relative errors
increased. Unlike other studies21,22 in which the
errors of fluences between the simulated and experi-
mental data were discussed, the data in Table 1 and
the numbers associated with the arrows in Figs. 6
and 9 are errors between the predicted and exper-
imentally measured signal perturbations that were
generated by the heterogeneities. Therefore, aver-
aged errors less than 40% for the absorption pertur-
bations (without considering the first two channels)
may still be acceptable for some LOT applications
in which the reconstruction speed is more interest-
ing or preliminary image reconstruction is wanted
before adopting more sophisticated methods, such
as MC simulations. For fluorescence perturbations,
delta-P1 provided less than 20% averaged errors
(without considering the first two channels and the
locations close to the source and the detectors) and
therefore it should be an appropriate approximation
for the applications of fluorescence LOT.

4.3. Possible error sources

Possible reasons causing the errors between the
experimental data and the delta-P1 approximation
can be summarized as follows. Firstly, in present
study, the fluence is assumed to be proportional to
the LOT signals. However, for very short source–
detector separations as shown in Fig. (2), the ratio
diverges from the constant (indicated by the black
line). The distance (l) at which the ratio starts
diverging from the constant is related to the trans-
port albedo. Figure 10 plots MC simulated data
for l as a function of absorption coefficient (µa)

Fig. 10. The starting-diverging-distance l indicated in Fig. 2
as a function of the medium absorption coefficient. X-axis is
in log scale.

while the reduced scattering coefficient (µ′
s) is main-

tained as a constant (0.6 mm−1). The correspond-
ing transport albedo along x-axis is 0.997, 0.968,
0.750, and 0.231. When the source–detector sepa-
ration is less than l, radiance, instead of the flu-
ence, should be used for calculating LOT signals.
This result explains the fact that large errors always
occur for short source–detector separations. Based
on the results shown in Fig. 10, it is reasonable to
believe that the delta-P1 approximation should pro-
vide more accurate estimations than those shown
in Figs. (5) and (6) and Figs. (8) and (9) when
increasing the transport albedo. This was verified
by comparing the results calculated from delta-P1
approximation with those calculated from MC sim-
ulation for albedo of 0.97 and 0.99 (data not shown).
Secondly, although the delta-Eddington phase func-
tion and the line source incorporated in delta-P1
approximation can release the pressure on diffusion
approximation to a certain degree, delta-P1 approx-
imation still produces certain errors in the region
surrounding the light source and detectors21−24

because of the intrinsic limitations of diffusion mod-
els. Thirdly, the Rytov approximation and the reci-
procity approximation can also generate errors in
the calculations of perturbations. In addition, noises
in LOT measurements may lead to certain errors,
especially for deep regions.

5. Summary and Conclusions

The relative errors of perturbations between the
delta-P1-simulated and experimentally measured
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data were quantified. For absorption perturba-
tions, large relative errors were found when source–
detector separations were very small (such as
rsd = 0 and 0.4 mm) or when the heterogeneity
was very close to the source or detectors. However,
for large source–detector separations and deep het-
erogeneities, the channel-averaged relative errors of
perturbations were found to be less than 40%, which
implies that delta-P1 approximation may be used
as a forward model for rapid image reconstruction
before adopting more sophisticated methods, such
as MC simulations. The relative errors of fluores-
cence perturbations were found to be much smaller
than those of absorption perturbations because of
the isotropic property of the emission light, which
implies that delta-P1 approximation is a good
model for rapid image reconstruction in fluores-
cence LOT. The model’s accuracy can be further
improved when used for a medium with higher
transport albedo.
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Appendix A

As pointed out by Haskell25 and Hull,35 the mea-
sured signal by an optical fiber placed at the surface
or a lens on the top of a semi-infinite medium can
be expressed as

Signal(ρ, z = 0)

=
∫∫

A
dA

∫ 2π

0
dϕ

∫ θ0

0
sin θdθ

·Rd(x, y, z = 0, ŝ)(ŝ · n̂)

≈ 2πA

∫ θ0

0
sin θ cos θ Rd(x, y, 0, θ)dθ, (A1)

where A is the detector area, θ0 is the acceptance
angle of the measurement system, Rd(x, y, z = 0, ŝ)
is the diffused reflectance at the position of
(x, y, z = 0) and the direction of ŝ. The area is
assumed so small that the Rd(x, y, z = 0, ŝ) is con-
sidered independent of spatial position within the
area A. Equation (A1) implies that the measured
signal is proportional to the angular integral of the
diffused reflectance at the medium surface.

Appendix B

The relative perturbation caused by an absorbing
target can be expressed as5−9,37

∆Φ(rsi, rdi)
Φ0(rsi, rdi)

=
− ∫

Ω Φ0(rsi, r)G(r, rdi)∆µa(r)dr3

Φ0(rsi, rdi)
.

(B1)

∆Φ(rsi, rdi) is the fluence perturbation measured at
the ith source–detector pair with and without the
absorbing target, Φ0(rsi, rdi) represents the fluence
at the position of the ith detector generated by the
ith source, Φ0(rsi, r) is the fluence at position r gen-
erated by the ith source with unit of Watts/mm2,
G(r, rdi) represents the Green’s function and repre-
sents a photon propagation factor from the position
r to the position of the ith detector (rdi), which has
a unit of mm−2 if diffusion coefficient D is included,
∆µa(r) is the perturbation of absorption coefficient
at position r, and Ω is the target volume. Digitizing
the integral in Eq. (B1), the following approxima-
tion is given

∆Φ(rsi, rdi)
Φ0(rsi, rdi)

≈

−
N∑

j=1

∆v · Φ0(rsi, rj)

·G(rj , rdi) · ∆µa(rj)
Φ0(rsi, rdi)

=

−
N∑

j=1

∆v · Φ0(rsi, rj)

·Φ0(rsi, |rj − rdi|)∆µa(rj)
Φ0(rsi, rdi)S0

.

(B2)

In the second line, Φ0(rsi, |rj − rdi|)/S0 is used
to replace the Green’s function in the first line.
S0 is a constant with unit of Watts. Figure B1
shows the fluence distributions in x−z plane cal-
culated from MC simulation, and the principle of
reciprocity is indicated. By setting rsi = 0 and
R denoting an arbitrary voxel, the relative flu-
ence perturbation caused by ∆µa at position R
is expressed as Eq. (B2) in which Φ0(rsi, rj) and
G(rj , rdi) are a function of |rj | and |rdi − rj |, respec-
tively. Reciprocity states that the probability of a
photon propagating from the point S to the point
R is assumed to be equal to the probability of
the photon propagating from the point R to the
point S.26 If the source is assumed to be com-
pletely equivalent to the detector, photon propa-
gation from point R to point D is equivalent to
from R′ to S, and therefore is equivalent to from
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Fig. B1. A schematic drawing shows the principle of the
approximation of the reciprocity. Fluence distribution in x−z
plane was calculated from MC simulation.

S to R′. Consequently, the unknown Green’s func-
tion, G(rj , rdi), which represents the propagation
factor from point R to point D, can be replaced
with the fluence at R′ divided by a power constant
S0 (which is represented as Φ0(rsi, |rj − rdi|)/S0).
To make the sensitivity matrices nondimensional,
the fluence (Φ0(rsi, r0)) at any position r0 gener-
ated by the ith source is used as a normalization
factor:

∆Φ(rsi, rdi)
Φ0(rsi, rdi)

≈
−

N∑
i=1

∆v ·
(

Φ0(rsi, rj)
Φ0(rsi, r0)

)
·
(

Φ0(rsi, rj − rdi)
Φ0(rsi, r0)

)
(

Φ0(rsi, rdi)
Φ0(rsi, r0)

)

·
(

Φ0(rsi, r0)
S0

)
∆µa(rj)

= Wij(rsi, rj , rdi)
(

Φ0(rsi, r0)
S0

∆µa(rj)
)

,

(B3)

where Wij(rsi, rj , rdi) is defined by Eq. (8).
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